• (646) 715-2096

How to reduce your building’s carbon footprint to meet new New York City requirements

Following the lead of the New York state government’s commitment to clean energy, the City of New York has passed legislation to do their part to move toward a carbon-neutral future.

The Climate Mobilization Act (1253-2018), a set of bills which was passed overwhelmingly by City Council on April 18, 2019, includes several regulations that affect building owners and developers. The regulations focus on ‘building energy and emissions performance’ and will create a dedicated office within the department of buildings (DOB) whose duties will include, but not be limited to, overseeing the implementation of this legislation within existing buildings, major renovations and new construction alike. Here is an overview of what steps existing building owners (especially of large buildings) in New York City need to take in order to comply with these new mandates.

Since buildings are the source of about two-thirds of New York’s carbon emissions, a big part of the legislation is setting new standards for these buildings. The initiatives aim to decrease greenhouse gas emissions from city buildings by 40% (compared to 2005) in the next ten years, and 80% in the next 20 years. Greenhouse gasses include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, and others.

This ambitious timeline means energy-efficient retrofits will have to occur on a scale that has never been undertaken by an American city. While there are some exceptions, lengthened timelines and reduced requirements for certain building types, for the most part, any building 25,000 square feet or larger must eventually meet new standards. That’s at least 50,000 spaces in New York.

Buildings that are in the top 20% of producing emissions will only have five years to implement changes. Exceptions include electric and steam power generation plants, rent-stabilized apartments (temporarily), places of worship and non-profit hospitals.

Starting in 2024, owners will need to show that the annual emissions of their building did not exceed the limits set in the law. The limits are based on square feet and occupancy, calculating electricity consumed by the building. Limits are calculated as metric tons of carbon dioxide equivalent per square foot (tCO2e/sf). While certain health care and civic facilities will have limits as high as 0.01193 tCO2e/sf, occupancy groups S and U will have the lowest limits to meet, 0.00110 [limits for years 2030-2034]. For the years of 2024-2029, the limits for a commercial building occupancy group B such as office buildings is set at 0.00846 tCO2e/sf.

According to the Energy Information Administration the average office building used 15.9 kilowatt-hours of electricity per square foot in 2012 (EIA ‘table 3: Total electricity consumption and intensities, 2012’). Using the legislation’s calculations for electricity directly consumed from the utility grid, that works out to 0.00459 tCO2e/sf which is less than the maximum limit of 0.00848 tCO2e/sf mandated, so this seems to indicate that at least for now many modern office buildings will already be in line with the new legislation requirements for the years 2024-2029.

The limits are calculated for those using power delivered by the electrical grid. Those that make use of on-site generation, distributed energy or are not on the utility distribution system will have separate rules. And those using steam will have an easier time meeting the requirements, as the calculations for energy consumed are lower than those for electricity.

By December 31, 2024, building owners must show they have undertaken energy conservation measures, including the following:

  • Adjusting temperature set points for heat and hot water to reflect appropriate space occupancy and facility requirements;
  • Repairing all heating system leaks;
  • Maintaining the heating system, including but not limited to ensuring that system component parts are clean and in good operating condition;
  • Installing individual temperature controls or insulated radiator enclosures with temperature controls on all radiators;
  • Insulating all pipes for heating and/or hot water;
  • Insulating the steam system condensate tank or water tank;
  • Installing indoor and outdoor heating system sensors and boiler controls to allow for proper set-points;
  • Replacing or repairing all steam traps such that all are in working order;
  • Installing or upgrading steam system master venting at the ends of mains, large horizontal pipes, and tops of risers, vertical pipes branching off a main;
  • Upgrading lighting;
  • Weatherizing and air sealing where appropriate, including windows and ductwork, with focus on whole-building insulation;
  • Installing timers on exhaust fans;
  • Installing radiant barriers behind all radiators;
  • Putting solar panels and plants to create green roofs;
  • Use of clean distributed energy resources, including hydropower, solar photovoltaics, geothermal wells or loops, tidal action, waves or water currents, and wind;
  • Using energy storage solutions, such as batteries, thermal systems, mechanical systems, compressed air, and superconducting equipment.

The bill provides for the creation of a loan program for businesses to apply to, to undertake these efforts, and new incentive programs are expected to be created.

It will be possible to purchase offsets or renewable energy credits, for up to ten percent of annual emissions, from authorized, local providers.

The new Office of Building Energy and Emissions Performance will oversee the implementation and auditing of the laws and policies in existing buildings and new construction. That department will be issuing the protocols for monitoring energy use by buildings, and creating an online site for building owners to submit their emissions data.

An Advisory Board will include architects, engineers, a building owner or manager, a public utility industry representative, environmental justice and advocacy organization representatives, a business sector representative, residential tenant representatives and a construction trades representative. A separate commission formed in the legislation has until the end of 2022 to create a guide to delineate the responsibilities of the building designer and owners to comply with emissions limits.

The penalties for noncompliance include fees for emissions above set limits, though there may be some leniency if the owner can show due diligence in attempting to comply by investing in energy efficiency measures. Non-reporting could rack up fines of $25,000 a month or more, while those who lie in their reports could face up to $500,000 or imprisonment. So it’s important to plan ahead, and start early to figure out what steps you will take to comply with the new law. As a building owner or developer, consulting with your architect or engineer for building assessment is a good way to start this process and avoid a lot of headaches down the road.

Read more

Cogeneration: What This Energy  Method Can Do for Your Company

What if you could harness an energy technology that would create not just power but heat for your building, and save you money at the same time?

That technology, called combined heat and power (CHP), or cogeneration, is already being used to produce over 11% of Europe’s electricity. And the technique will only be more widespread in the coming years. China and India have been increasing cogeneration use dramatically, and are expected to keep increasing usage of CHP by up to 28% in the next 11 years.

The process of cogeneration, also known as recycled energy or distributed generation, involves capturing excess heat from whatever production method is used to produce electricity. This could include exhaust from burning oil, coal, natural gas or even biomass or methane from garbage or wastewater. This can happen in a huge power station or a single engine.  

The most straightforward use of this heat is to usher it through pipes to heat various parts of the building. But it can also be used to boil water to create steam to provide an extra power boost. When the latter method is utilized, it’s called combined cycle.

The improvement of percent of useable energy is dramatic. Conventional energy systems convert only about 45% of useable energy from any given fuel source. Cogeneration however, converts about 75% or more, a 60-70% increase in efficiency. CHP technology continues to improve, leading to greater energy conversion and re-use rates.

The benefits are manifold. Buildings that use cogeneration decrease energy use, costs, greenhouse gas emissions and in some cases, pollutants.

While the practice has been widely used in large industrial settings, it is now being used in commercial buildings. Heating and cooling buildings is one of the most expensive operating costs for office buildings, and HVAC (heating, ventilation, air conditioning) is an area that is tailor-made to benefit from cogeneration.

The basic steps to take advantage of cogeneration in a building are:

  • Installing a fuel cell, turbine or engine to generate electricity for the building
  • Installing a heat recovery unit to capture hot exhaust from the electricity generation
  • Using the heat energy to power an absorption chiller or a steam generator, which drives and controls the HVAC system
  • Using any excess thermal energy to heat water for the building’s occupants   

There are thousands of cogeneration plants in North America. While some are utility power plants, many are small plants at corporations, hospitals, hotels or on university campuses. These localized power plants reduce the cost of transporting electricity. Meanwhile, in Japan, Honda is on its fifth-generation of a household-sized cogeneration unit.

Companies are seeing dramatic savings by using cogeneration. Computer networking company Network Appliance uses a cogeneration system with natural gas. The company has said it has reduced energy costs by $300,000 a year to meet its high-demand air conditioning needs.

If you’d like to see more examples of CHP, you can access the Department of Energy’s database of CHP projects.

Of course, you will need to adhere to regulations of your local energy company. New York facilities should read ConEd’s guide to CHP for projects over 5MW.

 

Read more

What does New York’s commitment to clean energy mean for your business?

A couple of months ago, New York’s Governor Cuomo issued a statement that the state would go 100% carbon-free energy by 2040.

This statement follows on the heels of approval by the New York Public Service Commission to implement the third stage of its Clean Energy Standard (CES). Both are part of the state’s Reforming the Energy Vision which sets as goals that by 2030 the state will see a 40% reduction in greenhouse gas emissions from 1990 levels, with 70% of electricity coming from renewable sources like wind, solar, and hydro. They also list as a goal a 600 trillion Btu increase in statewide energy efficiency. By 2080, the plan envisions the State will see an 80% reduction in greenhouse gas emissions.

In December 2018, the state’s Power Authority (NYPA) announced that it was investing $250 million in updating its electric grid to be more flexible to incorporate storage of electricity coming from renewable sources. NYPA already produces most of its electricity (70 percent) from hydropower.

In addition, the New York Public Service Commission has set ambitious energy storage goals of 1,500 MW by 2025 and 3,000 MW by 2030. It also sets a target for energy efficiency for the state’s investor-owned utilities to double utility energy efficiency reductions by 2025. These reductions will come in part from retiring any combustion turbine peaking units in New York City and Long Island that were built before 1990.

But what does all this mean for you and your business? For one thing, the state will be making regulatory changes to utility rates and carbon values. Commercial and industry players should expect to see incentives for switching to renewable offerings by utilities, and for using electricity during off-peak times.

Then there are the dozens of state and federal incentives available to businesses looking to transition to clean energy. Through the state’s  ground source heat pump rebate program for example, a building can get a rebate of up to $500,000 for installing a pump. Another program will help subsidize the installation of a real-time energy management system.

Through the NY Green Bank, commercial real estate owners can get financing to purchase and install “energy efficiency and/or renewable energy assets.”

For data centers looking to invest in energy efficiency equipment and productivity improvements, there’s the Industrial and Process Efficiency (IPE) program which offers performance-based incentives to offset costs. The incentives are calculated from the annual kilowatt-hour savings that result from implementing energy efficiency measures.

And it’s not just infrastructure: There’s a program that supports companies in hiring a full-time On-site Energy Manager, and another to encourage On-the-Job Training for Energy Efficiency and Clean Technology.

You can search this database for a comprehensive list for New York and other states.

New York is joining a trend toward 100% renewable energy seen in other states across the nation. Storage target numbers show this commitment. New Jersey wants to see 2,000 MW by 2030; California’s target is 1,300 MW by 2020; and Massachusetts is looking to dramatically increase the state’s existing 200 MWh storage target to 2,000 MW by 2025.

Read more